lazy_text_classifiers package#
Subpackages#
- lazy_text_classifiers.model_wrappers package
- Submodules
- lazy_text_classifiers.model_wrappers.estimator_base module
- lazy_text_classifiers.model_wrappers.fine_tuned_transformer module
- lazy_text_classifiers.model_wrappers.semantic_logit module
- lazy_text_classifiers.model_wrappers.setfit_transformer module
- lazy_text_classifiers.model_wrappers.tfidf_logit module
- Module contents
Submodules#
lazy_text_classifiers.constants module#
lazy_text_classifiers.logging_utils module#
- lazy_text_classifiers.logging_utils.set_global_logging_level(level: int = 40, prefices: list[str] | None = None) None [source]#
Override logging levels of different modules based on their name as a prefix. It needs to be invoked after the modules have been loaded so that their loggers have been initialized.
- Parameters:
- level: int
Desired level. e.g. logging.INFO. Default is logging.ERROR
- prefices: list[str] | None
One or more string prefices to match (e.g. [“transformers”, “torch”]) Default of None will match all loggers. The match is a case-sensitive module_name.startswith(prefix)
Notes
Credit: https://github.com/huggingface/transformers/issues/3050#issuecomment-682167272
lazy_text_classifiers.model_selection module#
- class lazy_text_classifiers.model_selection.LazyTextClassifiers(verbose: int = 1, ignore_warnings: bool = True, random_state: int | None = None)[source]#
Bases:
object
Class for managing fitting all classifiers.
- Parameters:
- verbose: int
Logging verbosity level. Levels:
0 - no logging; 1 - log basic progress; 2 - log everything;
Default: 1 (log basic progress)
- ignore_warnings: bool
Should all warnings be ignores.
- random_state: int | None
A seed to initialize random state. Default: None (no pre-set random seed)
- fit(x_train: Collection[str], x_test: Collection[str], y_train: Collection[str], y_test: Collection[str], model_kwargs: dict[str, Any] | None = None) DataFrame [source]#
Fit all models with the provided data.
- Parameters:
- x_train: Collection[str]
The training data, an iterable object where each item is a string.
- x_test: Collection[str]
The testing data, an iterable object where each item is a string.
- y_train: Collection[str]
The training labels, an iterable object where each item is a class.
- y_test: Collection[str]
The testing labels, an iterable object where each item is a class.
- model_kwargs: dict[str, Any] | None
Any specific model kwargs to pass through. Default None (use default parameters and settings for all models)
- Returns:
- pd.DataFrame
The results and metrics returned from fitting all models.
Module contents#
Top-level package for lazy_text_classifiers.